China Best Sales WREN Hydraulic Cylinder Series CLRG15010 Double-Acting High Tonnage Cylinder (150 ton) vacuum pump adapter

Product Description


Product Description

Capacity  Stroke  Model Min Height Outside Diameter Effective Area Oil Capacity Plunger Diameter Weight 
(Ton) (mm)  (mm)  (mm) (cm²) (cm³) (mm) (Kg)
Push Pull         Push Pull Push Pull    
10 4. 1 254 CLRG1571 409 76 14.5 5.9 368 149 33 12
10 4. 1 305 CLRG1012 457 76 14.5 5.9 442 180 33 14
50 22.6 150 CLRG506 325 127 70.8 32.3 1062 484 70 30
50 22.6 300 CLRG5012 475 127 70.8 32.3 2124 969 70 52
100 44 50 CLRG 1002 182 188 132. 7 61.9 664 310 95 27
100 44 100 CLRG 1004 232 188 132.7 61.9 1327 619 95 33
100 44 150 CLRG 1006 282 188 132.7 61.9 1991 929 95 37
100 44 200 CLRG 1008 332 188 132.7 61.9 2654 1238 95 44
100 44 250 CLRG1571 382 188 132.7 61.9 3318 1548 95 50
100 44 300 CLRG10012 432 188 132.7 61.9 3981 1857 95 57
150 67.9 50 CLRG 1502 196 216 201 97 1005 485 115 47
150 67.9 100 CLRG 1504 246 216 201 97 2571 970 115 57
150 67.9 150 CLRG1506 296 216 201 97 3015 1455 115 67
150 67.9 200 CLRG 1508 346 216 201 97 4571 1940 115 77
150 67.9 250 CLRG15571 396 216 201 97 5571 2425 115 87
150 67.9 300 CLRG15012 446 216 201 97 6030 2910 115 97
200 93 50 CLRG2002 235 242 265.9 133. 1 1329 665 130 67
200 93 150 CLRG2006 335 242 265.9 133. 1 3988 1996 130 92
200 93 250 CLRG2571 435 242 265.9 133. 1 6647 3327 130 117
250 107 50 CLRG2502 236 288 366.4 152.6 1832 763 165 105
250 107 150 CLRG2506 336 288 366.4 152. 6 5496 2289 165 141
250 107 250 CLRG25571 436 288 366.4 152. 6 9160 3815 165 176
300 121 50 CLRG3002 350 325 456.2 172. 6 2281 863 190 204
300 121 150 CLRG3006 412 325 456.2 172. 6 6843 2589 190 252
300 121 250 CLRG3571 512 325 456.2 172. 6 11405 4315 190 299
400 138 50 CLRG4002 370 367 559.9 196.8 2799 984 215 281
400 138 150 CLRG4006 470 367 559.9 196.8 8399 2952 215 342
400 138 250 CLRG4571 570 367 559.9 196.8 13998 4920 215 405
500 168 50 CLRG5002 400 405 730. 6 239. 7 3653 1198 250 411
500 168 150 CLRG5006 500 405 730. 6 239. 7 10959 3595 250 493
500 168 250 CLRG5571 600 405 730. 6 239. 7 18265 5992 250 575
600 207 50 CLRG6002 445 450 855.3 295.4 4277 1477 267 494
600 207 150 CLRG6006 545 450 855.3 295.4 12830 4431 267 586
600 207 250 CLRG6571 645 450 855.3 295.4 21383 7385 267 678
800 252 50 CLRG8002 695 515 1164 360 5820 1800 320 759
800 252 150 CLRG8006 595 515 1164 360 17460 5400 320 885
800 252 250 CLRG8571 695 515 1164 360 29100 9000 320 1019
1000 380 50 CLRG 10002 535 580 1465. 7 541.7 7328 2708 342 1012
1000 380 150 CLRG 10006 635 580 1465. 7 541.7 21985 8125 342 1168
1000 380 250 CLRG10571 735 580 1465. 7 541.7 36418 13543 342 1325

Company Profile

Why Choose Us

Quality control


Exhibition photos

Our Customers



Q: How to order?
A: Inquire with us→ sample customization→ use scenario inform→ receive our product design recommendation→ negotiate details→ confirm the sample→ CHINAMFG the contract/deposit→mass production→ the goods are ready→ balance/delivery→ further cooperation.

Q: How about the sample order?
A: We can provide the sample price, please contact us for details.

Q: Which shipping method is available?
A: By sea, by air, or by express (DHL, UPS, FedEx). Other shipping methods are also available, please contact us for details.

Q: How long is the delivery [production] and shipment?
A: The delivery time depends on the quantity you ordered. Shipped from the factory, within 3 days for standard parts and within 10 days for non-standard parts.

Q: My package is missing some products, what can I do?
A: Please contact our support team, we will confirm the contents of your order with the packaging, and compensate for the shipment. We apologize for the inconvenience.

Q: How to confirm the payment?
A: We accept T/T payment method. The first type is 30% deposit order confirmed, and the remaining 70% is paid before shipment, and the second type is 100% paid before shipment. Other payment methods are also acceptable, please contact us before you pay by other payment methods.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Switching Type


hydraulic cylinder

How do manufacturers ensure the durability and reliability of hydraulic cylinders?

Manufacturers employ various strategies and techniques to ensure the durability and reliability of hydraulic cylinders. These measures are crucial as hydraulic cylinders are often subjected to demanding operating conditions and heavy loads. To ensure their longevity and dependable performance, manufacturers focus on the following aspects:

1. High-Quality Materials:

– Manufacturers use high-quality materials in the construction of hydraulic cylinders. Components such as cylinder barrels, piston rods, seals, and bearings are made from materials that possess excellent strength, corrosion resistance, and wear resistance properties. Common materials used include high-grade steel alloys, chrome-plated rods, and specialized coatings. The selection of appropriate materials ensures that hydraulic cylinders can withstand the stresses, pressures, and environmental conditions they encounter during operation.

2. Robust Design:

– Hydraulic cylinders are designed to withstand high loads and harsh operating conditions. Manufacturers use computer-aided design (CAD) software and finite element analysis (FEA) techniques to optimize the cylinder’s structural integrity and performance. The design includes factors such as proper wall thickness, reinforcement in critical areas, and appropriate sizing of components. Robust design practices ensure that hydraulic cylinders can withstand the forces and stresses they encounter, preventing premature failure and ensuring durability.

3. Quality Manufacturing Processes:

– Manufacturers follow stringent quality control measures during the manufacturing processes of hydraulic cylinders. These processes include precision machining, welding, heat treatment, and surface finishing. Skilled technicians and advanced machinery are employed to ensure dimensional accuracy, proper fitment of components, and overall quality. By adhering to strict manufacturing processes and quality standards, manufacturers can produce hydraulic cylinders with consistent performance and reliability.

4. Sealing Technology:

– The sealing system of hydraulic cylinders is critical for their durability and reliability. Manufacturers utilize advanced sealing technologies such as lip seals, O-rings, and composite seals to prevent fluid leakage and ingress of contaminants. Properly designed and high-quality seals ensure that hydraulic cylinders can maintain their performance over extended periods. Seals are tested for their compatibility with the hydraulic fluid, pressure resistance, and resilience to environmental factors such as temperature and humidity.

5. Performance Testing:

– Manufacturers subject hydraulic cylinders to rigorous performance testing to validate their durability and reliability. These tests simulate real-world operating conditions and evaluate factors such as load capacity, pressure resistance, fatigue life, and leakage. Performance testing helps identify any design flaws or weaknesses in the hydraulic cylinder and allows manufacturers to make necessary improvements. By conducting thorough performance testing, manufacturers can ensure that hydraulic cylinders meet or exceed the required performance standards.

6. Compliance with Industry Standards:

– Manufacturers adhere to industry standards and regulations to ensure the durability and reliability of hydraulic cylinders. These standards, such as ISO 6020/6022 and NFPA T3.6.7, provide guidelines for design, manufacturing, and performance requirements. By following these standards, manufacturers ensure that hydraulic cylinders are designed and built to meet specific quality and safety criteria. Compliance with industry standards helps establish a baseline for durability and reliability and instills confidence in the performance of hydraulic cylinders.

7. Regular Maintenance and Service:

– Manufacturers provide recommendations for regular maintenance and service of hydraulic cylinders. This includes guidelines for lubrication, inspection of components, and replacement of wear parts such as seals and bearings. Following the manufacturer’s maintenance guidelines helps ensure the long-term durability and reliability of hydraulic cylinders. Regular maintenance also allows for the early detection of potential issues, preventing major failures and extending the service life of the hydraulic cylinders.

8. Customer Support and Warranty:

– Manufacturers provide customer support and warranty services to address any issues that arise with hydraulic cylinders. They offer technical assistance, troubleshooting guidance, and replacement of defective components. The warranty ensures that customers receive reliable and durable hydraulic cylinders and provides recourse in case of any manufacturing defects or premature failures. Strong customer support and warranty policies reflect the manufacturer’s commitment to the durability and reliability of their products.

In summary, manufacturers ensure the durability and reliability of hydraulic cylinders through the use of high-quality materials, robust design practices, stringent manufacturing processes, advanced sealing technology, thorough performance testing, compliance with industry standards, regular maintenance guidelines, and customer support with warranty services. By focusing on these aspects, manufacturers can produce hydraulic cylinders that can withstand demanding conditions, provide long service life, and deliver reliable performance in various applications.

hydraulic cylinder

Handling Challenges of Different Fluid Viscosities in Hydraulic Cylinders

Hydraulic cylinders are designed to handle the challenges associated with different fluid viscosities. The viscosity of hydraulic fluid can vary based on temperature, type of fluid used, and other factors. Hydraulic systems need to accommodate these variations to ensure optimal performance and efficiency. Let’s explore how hydraulic cylinders handle the challenges of different fluid viscosities:

  1. Fluid Selection: Hydraulic cylinders are designed to work with a range of hydraulic fluids, each with its specific viscosity characteristics. The selection of an appropriate fluid with the desired viscosity is crucial to ensure optimal performance. Manufacturers provide guidelines regarding the recommended viscosity range for specific hydraulic systems and cylinders. By choosing the right fluid, hydraulic cylinders can effectively handle the challenges posed by different fluid viscosities.
  2. Viscosity Compensation: Hydraulic systems often incorporate features to compensate for variations in fluid viscosity. For example, some hydraulic systems utilize pressure compensating valves that adjust the flow rate based on the viscosity of the fluid. This compensation ensures consistent performance across different operating conditions and fluid viscosities. Hydraulic cylinders work in conjunction with these compensation mechanisms to maintain precision and control, regardless of the fluid viscosity.
  3. Temperature Control: Fluid viscosity is highly dependent on temperature. Hydraulic cylinders employ various temperature control mechanisms to address the challenges posed by temperature-induced viscosity changes. Heat exchangers, coolers, and thermostatic valves are commonly used to regulate the temperature of the hydraulic fluid within the system. By controlling the fluid temperature, hydraulic cylinders can maintain the desired viscosity range, ensuring reliable and efficient operation.
  4. Efficient Filtration: Contaminants in hydraulic fluid can affect its viscosity and overall performance. Hydraulic systems incorporate efficient filtration systems to remove particles and impurities from the fluid. Clean fluid with the appropriate viscosity ensures optimal functioning of hydraulic cylinders. Regular maintenance and filter replacements are essential to uphold the desired fluid viscosity and prevent issues related to fluid contamination.
  5. Proper Lubrication: Different fluid viscosities can impact the lubrication properties within hydraulic cylinders. Lubrication is essential for minimizing friction and wear between moving parts. Hydraulic systems employ lubricants specifically formulated for the anticipated fluid viscosity range. Adequate lubrication ensures smooth operation and extends the lifespan of hydraulic cylinders, even in the presence of varying fluid viscosities.

In summary, hydraulic cylinders employ various strategies to handle the challenges associated with different fluid viscosities. By selecting appropriate fluids, incorporating viscosity compensation mechanisms, controlling temperature, implementing efficient filtration, and ensuring proper lubrication, hydraulic cylinders can accommodate variations in fluid viscosity. These measures enable hydraulic systems to deliver consistent performance, precise control, and efficient operation across different fluid viscosity ranges.

hydraulic cylinder

How do hydraulic cylinders accommodate variations in stroke length and force requirements?

Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here’s a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:

1. Cylinder Size and Design:

– Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder’s diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.

2. Piston and Rod Configurations:

– Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.

3. Hydraulic Pressure and Flow:

– The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.

4. Customization and Tailoring:

– Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.

5. Multiple Cylinders and Synchronization:

– In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.

6. Load-Sensing and Pressure Control:

– Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application’s needs.

7. Safety Considerations:

– When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.

By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.

China Best Sales WREN Hydraulic Cylinder Series CLRG15010 Double-Acting High Tonnage Cylinder (150 ton)   vacuum pump adapter	China Best Sales WREN Hydraulic Cylinder Series CLRG15010 Double-Acting High Tonnage Cylinder (150 ton)   vacuum pump adapter
editor by CX 2023-12-28