Tag Archives: breaker hydraulic

China Good quality Middle Cylinder Assembly Carry Accumulator Sb81 Cylinder for Hydraulic Breaker Spare Parts vacuum pump ac

Product Description

Middle Cylinder Assembly Carry Accumulator SB81 Cylinder for Hydraulic Breaker Spare Parts

Product Information

Product Name Middle Cylinder Assembly Cylinder OEM Welcome
Size Standard Size MOQ 1 set
Application SOOSA*N Hammer Breaker Color Standard or OEM
Material Rubber/PU Brand SOOSA*N
Model SB81 SB-81 SB81 Condition 100% New 

 

SOOSA*N Series

SQ80 SB50 SB100 SU+55 SB151 SH35G SB10 ST200
SQ130 SB80 SB130 SU+125 SB162 SH400 SB35 ET300
SQ140 SB81 SB140 SU+145 SB202 SH700 SB40 ST300
SQ100 SB60 SB120 SU+85 SB152 SH40G SB20 ET200
SQ120 SB70 SB121 SU+105 SB160 SH200 SB30  
SQ150 SB81A SB145 SU+155 SH18G SQ60 SB43  
SQ180 SB81N SB150 SU+165 SH20G SQ70 SB45  

TOKU Rock Breaker Cylinder Model

TNB-08M TNB-1M TNB-1E TNB-2M TNB-2E
TNB-3M TNB-3E TNB-4E TNB-4M TNB-5M
TNB-5E TNB-6M TNB-6E TNB-6B TNB-6.5E
TNB-7M TNB-7B TNB-7E TNB-8A TNB-10E
TNB-13A TNB-13E TNB-14B TNB-14D TNB-14E
TNB-15E TNB-16B TNB-16E TNB-22E TNB-23E
TNB-30E TNB-31E TNB-38E TNB-100 TNB-141
TNB-150 TNB-151 TNB-190 TNB-220 TNB-230
TNB-310 TNB-400      

 

KONAN Series

MKB500 MKB800
MKB900 MKB1200/N
MKB1300/N MKB1400/N/V
MKB1500 MKB1600
MKB1700 MKB1800

GENERAL Series

GB2T GB3T GB4T GB270E
GB8T GB5T GB6T GB290E
GB8AT GB9F GB130E GB300E
GB11T GB50E GB170E GB400E
GB14T GB230E GB228E GB500E

FINE Series Seal Kit

FINE10 FINE8 FINE6 FINE7 FINE12 FINE5
FINE23 FINE22 FINE20 FINE21 FINE25 FINE15
FINE45 FINE40 FINE35 FINE36 FINE50 FINE30
FINE4          

DAEMO Series

DMB03 S3600 S45
DMB04 S500-V S2200-2
DMB4000 DMB06 S2200-1
S150-V DMB5000 S900-V
S1800-V S1300-V S2500
S3000    

MSB Series

MS-200 MS-450 MS-800 XIHU (WEST LAKE) DIS.-20 XIHU (WEST LAKE) DIS.-120 XIHU (WEST LAKE) DIS.-350
MS-220 MS-460 MS-900 XIHU (WEST LAKE) DIS.-30 XIHU (WEST LAKE) DIS.-180 XIHU (WEST LAKE) DIS.-400
MS-225 MS-500 MS-1000 XIHU (WEST LAKE) DIS.-40 XIHU (WEST LAKE) DIS.-200 XIHU (WEST LAKE) DIS.-500
MS-250 MS-520 MS-35AT XIHU (WEST LAKE) DIS.-50 XIHU (WEST LAKE) DIS.-210 XIHU (WEST LAKE) DIS.-510
MS-255 MS-550 MS-45AT XIHU (WEST LAKE) DIS.-55 XIHU (WEST LAKE) DIS.-220  
MS-300 MS-600 MS-55AT XIHU (WEST LAKE) DIS.-81 XIHU (WEST LAKE) DIS.-250  
MS-400 MS-700 MS-75AT XIHU (WEST LAKE) DIS.-100 XIHU (WEST LAKE) DIS.-300  

HANWOOD Series

RHB301 RHB320 RHB313 RHB321 RHB335
RHB302 RHB304 RHB309 RHB307 RHB340
RHB303 RHB305 RHB306 RHB308 RHB350
RHB322 RHB323 RHB325 RHB326  
RHB328 RHB330 RHB332 RHB334  

KOMAST*U Series

JTHB100 JTHB150 JTHB190 JTHB230 JTHB230-1 JTHB310

OKADA Series

UB2 UB4 UB5 UB7 UB8
UB8A UB8A1 UB8A2 UB10 UB11
UB11A UB11A1 UB11A2 UB14 UB14A2
OUB303 OUB303A OUB304 OUB305 OUB305A
OUB306 OUB308 OUB308A OUB309 OUB310
OUB312 OUB312A OUB312B OUB316 OUB318
OUB512 TOP21LT TOP21H TOP25 TOP25A
TOP30 TOP31 TOP35 TOP35B TOP40
TOP45 TOP45B TOP55 TOP55B TOP60
TOP60B TOP90 TOP100 TOP100A TOP150
UB17 OUB301 OUB301A OUB302 OUB302A
TOP200 TOP205 TOP205B TOP210 TOP250
TOP270 TOP295 TOP300 TOP400 TOP700
TOP800 TOP1300 TOP1500 TOP2600 TOP3600
ORV250LT ORV250H ORV400 ORV550 ORV800S
ORV1000 ORV1300 ORV2500 ORV3000 ORV4000
ORV5000 ORV7500 ORV10000    

NPK Series

H-1XA H-2X/XA/XE H-3XA/XE H-4X/XE H-5X H-10XA/XB/XE
GH-1 H-30X H-12X/XE H-20X/XE H-6X/XA H-8X/XA
GH-2 GH-3 H-14X H-11X H-7X  
GH-6 GH-4 H-16/16XE E-212 E-240  
GH-9 GH-5 GH-10 GH-12 GH-15  
GH-18 E-208 E-18X E-24X E-210  
E-12X E-215 E-15X E-213 E-212  
E-216 E-218 E-220 E-225 E-224  

ATLAS COPCO Series

SB-50 SB-450 SBC-800 HB-4100/4200 HBC-6000 MB-700/750 TEX-80 TEX-700
SB-52 SB-452 SBC-850 HB-4700 PB-110 MB-800 TEX-100 TEX-900
SB-100 SB-552 HB-2000 HB-5800 PB-160 MB-1000 TEX-110 TEX-1400
SB-102 SBC-115 HB-2200 HB-7000 PB-210 MB-1200 TEX-180 TEX-1800
SB-150 SBC-225 HB-2500 HBC-1100 PB-310 MB-1500 TEX-200 TEX-2000
SB-152 SBC-410 HB-3000 HBC-1700 PB-420 MB-1600 TEX-250  
SB-200 SBC-610 HB-3100 HBC-2500 PB-530 MB-1700 TEX-400  
SB-300 SBC-650 HB-3600 HBC-4000 MB-500 TEX-75 TEX-600  

 

More Available Brand Hydraulic Hammer Model

MONTABERT BRH125,BRH250,BRH501,BRH625,SC12,BRV32,BRV43,etc
K*RUPP HM900,HM901,HM902,HM950,HM960,etc
RAMMER S23,S24,S25,S26,E63,E64,E66,E68,G90,G100,etc
INDECO MES2500,MES3000,MES3500,MES4000,etc
TOKU/T*OYO TNB 5E6E7E8E10E,TNB150151,TNB310,THBB301,THBB401,THBB801,
EVERDIGM RHB305,RHB313,RHB320,RHB321,RHB323,RHB324,RHB325,RHB326,etc
BLT/EDT BLT80-1,BLT80-2,BLT81,BLT100/EDT2000,EDT2200,EDT3000,EDT3200,EDT3500,etc
KWANGLIM SG200,SG300,SG350,SG400,SG600,SG800,SG1800,SG2000,SG2100,SG2500,
SG2800,SG3300,SG4000,SG1200
MONTABERT SC28,BRP130,BRP140,BRP150,V32,V43,V45,V53,V55,V1200,v1600,V2500,
BRH125,BRH270,BRH501,BRH570,BRH250,BRH625,BRH750,BRH1100
RAMMER M300,M600,M700,M900,XL1000,,XL1300,XL1600,XL1700,XL1900,,XL1700,XL2600

And also can be supply related poducts spare parts

Seal Kit Diaphragm Chisel
Lower Bush Upper Bush Thrust Bush
Side Rod Assy Stop Pin Tie Rod
Retainer Pin Pipe Clamp Auxiliary Valve
Moil Chisel Wedge Chisel Blunt Chisel
Through Bolt Set Side Bolt Charging Valve
Back Cylinder Front Cylinder Piston
Cone Chisel Oring box Hose Pipe
Accumulator Wear Bush Coupling
Hydraulic Breaker Valve Rod Chisel Membrane

Hot Sales
If you have other breaker spare parts demand, such as Rod pin, aTool pin, Through bolt, Side bolt, Piston, Diaphragm, Seal kit, Ring bush, Front cover, Control valve, Accumulator, etc, please click the below picture for more information, we believe we can save much of your time and be your ONE-STOP supplier.

Real Shop show

Now you can stop searching and comparison, I bet our factory can be your best choice. WHY?

First,Stable quality in various actual fields worldwide
Our chisels have been supplied to over 70 companies of more than 30 countries
Certificate such as CE, ISO, can also be a proof of our quality.

Second,Well equipped production facility.
We have own manufacturing factories for hydraulic breaker parts.
and it with an up-to-date production facility for high-end hydraulic breaker, chisel, and spare parts

Third,we have pistons for the following hydraulic breaker/hammers:
you can also send us your drawing for mass customized production
 
Fourth,Quality Assurance
Every working procedure would influence the product quality, thus each working procedure should
sustaining testing on our production lines.  Our warranty policy could make you rest easy.

Hence, Xihu (West Lake) Dis.an is available to show you our product range and guide you in the choice of the products that best fit your needs,

FAQ
Q1. How many days for the delivery time ?
It is about 1-7 working days after the order confirmation.

Q2. What kind of payments you accept?
Now we accept T/T,L/C or Western Union,other terms also could be negotiated,Recommended Trade Assurance to guarantee buyer’s property.

Q3. Are you able to manufacturing products according to customer’s design?
Sure,we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.

Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time,High quality products,Best customer service,Adopting the latest production technology.

Q5. Which countries have you been exported recently?
Canada,Australia,Peru,Egypt,Brazil,Mexico,South Africa,etc.

Q6. Are you sure that your product will my hydraulic breaker?
We have different brand hydraulic breakers. Show me your model number,and we can give you best match products.

Q7. How about the packing of the goods?
Standard export package,wood cases,or as customers’ demands.

 

Warranty: 3-6 Months
Type: Cylinder
Certification: ISO9001: 2000
Condition: New
Part Name: Hydraulic Breaker Cylinder
Color: Picture as Showed
Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved sealing and reliability?

Advancements in hydraulic cylinder technology have continuously contributed to improving sealing and reliability in hydraulic systems. These advancements aim to address common challenges such as leakage, wear, and failure of seals, ensuring optimal performance and longevity. Here are several key advancements that have significantly improved sealing and reliability in hydraulic cylinders:

1. High-Performance Sealing Materials:

– The development of advanced sealing materials has greatly improved the sealing capabilities of hydraulic cylinders. Traditional sealing materials like rubber have been replaced or enhanced with high-performance materials such as polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. These materials offer superior resistance to wear, temperature, and chemical degradation, resulting in improved sealing performance and extended seal life.

2. Enhanced Seal Designs:

– Advancements in seal designs have focused on improving sealing efficiency and reliability. Innovative seal profiles, such as lip seals, wipers, and scrapers, have been developed to optimize fluid retention and prevent contamination. These designs provide better sealing performance, minimizing the risk of fluid leakage and maintaining system integrity. Additionally, improved seal geometries and manufacturing techniques ensure tighter tolerances, reducing the potential for seal failure due to misalignment or extrusion.

3. Integrated Seal and Bearing Systems:

– Hydraulic cylinders now incorporate integrated seal and bearing systems, where the sealing elements also serve as bearing surfaces. This design approach reduces the number of components and potential failure points, improving overall reliability. By integrating seals and bearings, the risk of seal damage or displacement due to excessive loads or misalignment is minimized, resulting in enhanced sealing performance and increased reliability.

4. Advanced Coatings and Surface Treatments:

– The application of advanced coatings and surface treatments to hydraulic cylinder components has significantly improved sealing and reliability. Coatings such as chrome plating or ceramic coatings enhance surface hardness, wear resistance, and corrosion resistance. These surface treatments provide a smoother and more durable surface for seals to operate against, reducing friction and improving sealing performance. Moreover, specialized coatings can also provide self-lubricating properties, reducing the need for additional lubrication and enhancing reliability.

5. Sealing System Monitoring and Diagnostic Technologies:

– The integration of monitoring and diagnostic technologies in hydraulic systems has revolutionized seal performance and reliability. Sensors and monitoring systems can detect and alert operators to potential seal failures or leaks before they escalate. Real-time monitoring of pressure, temperature, and seal performance parameters allows for proactive maintenance and early intervention, preventing costly downtime and ensuring optimal sealing and reliability.

6. Computational Modeling and Simulation:

– Computational modeling and simulation techniques have played a significant role in advancing hydraulic cylinder sealing and reliability. These tools enable engineers to analyze and optimize seal designs, fluid flow dynamics, and contact stresses. By simulating various operating conditions, potential issues such as seal extrusion, wear, or leakage can be identified and mitigated early in the design phase, resulting in improved sealing performance and enhanced reliability.

7. Systematic Maintenance Practices:

– Advances in hydraulic cylinder technology have also emphasized the importance of systematic maintenance practices to ensure sealing and overall system reliability. Regular inspection, lubrication, and replacement of seals, as well as routine system flushing and filtration, help prevent premature seal failure and optimize sealing performance. Implementing preventive maintenance schedules and adhering to recommended service intervals contribute to extended seal life and enhanced reliability.

In summary, advancements in hydraulic cylinder technology have led to significant improvements in sealing and reliability. High-performance sealing materials, enhanced seal designs, integrated seal and bearing systems, advanced coatings and surface treatments, sealing system monitoring and diagnostics, computational modeling and simulation, and systematic maintenance practices have all played key roles in achieving optimal sealing performance and increased reliability. These advancements have resulted in more efficient and dependable hydraulic systems, minimizing leakage, wear, and failure of seals, and ultimately improving the overall performance and longevity of hydraulic cylinders in diverse applications.

hydraulic cylinder

Ensuring Controlled and Safe Force Application in Heavy Machinery with Hydraulic Cylinders

Hydraulic cylinders play a critical role in heavy machinery by ensuring controlled and safe force application. The ability to exert and control high forces is essential for heavy machinery operations, such as lifting, pressing, pushing, or pulling heavy loads. Let’s explore how hydraulic cylinders ensure controlled and safe force application in heavy machinery:

  1. Force Control: Hydraulic cylinders provide precise force control capabilities. The hydraulic system’s pressure can be adjusted to regulate the force exerted by the cylinder. This control allows operators to apply the necessary force for a specific task while ensuring it remains within safe limits. By accurately controlling the force, hydraulic cylinders help prevent excessive force that could damage the machinery or compromise the safety of the operation.
  2. Load Balancing: In heavy machinery, multiple hydraulic cylinders are often used in conjunction to distribute and balance the applied force. By using multiple cylinders, the load can be evenly distributed across the machinery, minimizing stress concentrations and ensuring controlled force application. This load balancing approach enhances the stability and safety of the machinery, preventing uneven loading that could lead to structural issues or instability.
  3. Safety Valves: Hydraulic systems in heavy machinery are equipped with safety valves to protect against excessive force or overloading. Safety valves are designed to release hydraulic fluid from the cylinder when the force exceeds a predetermined threshold. This prevents the force from reaching dangerous levels, safeguarding the machinery and preventing potential accidents or damage. Safety valves provide an additional layer of safety and ensure controlled force application even in unexpected circumstances.
  4. Pressure Relief Systems: Hydraulic cylinders incorporate pressure relief systems to further enhance safety. These systems are designed to relieve excess pressure in the hydraulic system, which could occur due to factors such as thermal expansion or system malfunctions. By relieving excess pressure, the pressure relief systems prevent sudden and uncontrolled force surges, maintaining safe and controlled force application in heavy machinery.
  5. Structural Integrity: Hydraulic cylinders are designed to withstand the high forces and loads associated with heavy machinery applications. The cylinders are constructed using robust materials, such as high-strength steel, and undergo rigorous testing to ensure their structural integrity. This ensures that the cylinders can safely handle the forces applied during heavy machinery operations without experiencing failures or deformations that could compromise the safety and controlled force application.

In summary, hydraulic cylinders ensure controlled and safe force application in heavy machinery through force control, load balancing, safety valves, pressure relief systems, and robust structural design. These features and design considerations enable operators to exert the necessary force while maintaining safety and preventing excessive loads or force surges. By incorporating hydraulic cylinders into heavy machinery, manufacturers can achieve controlled force application, enhance operational safety, and protect the machinery from damage or failure.

hydraulic cylinder

Can hydraulic cylinders be adapted for use in both industrial and mobile equipment?

Yes, hydraulic cylinders can be adapted for use in both industrial and mobile equipment. The versatility and adaptability of hydraulic systems make them suitable for a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Equipment:

– Hydraulic cylinders are extensively used in industrial equipment such as manufacturing machinery, construction equipment, material handling systems, and heavy-duty machinery. They provide the necessary force and controlled movement for tasks such as lifting, pushing, pulling, and positioning heavy loads. Industrial hydraulic cylinders are typically designed for robustness, durability, and high load-bearing capacities to withstand the demanding environments and heavy-duty applications encountered in industries.

2. Mobile Equipment:

– Hydraulic cylinders are also widely adopted in mobile equipment, including agricultural machinery, mining equipment, forestry machinery, and transportation vehicles. These cylinders enable various functions such as tilting, lifting, steering, and stabilizing. Mobile hydraulic cylinders are designed to be compact, lightweight, and efficient to meet the specific requirements of mobile applications. They are often integrated into hydraulic systems that power multiple functions in a single machine.

3. Adaptability:

– One of the key advantages of hydraulic cylinders is their adaptability. They can be customized and configured to suit different operating conditions, equipment sizes, load capacities, and speed requirements. Hydraulic cylinder manufacturers offer a wide range of sizes, stroke lengths, mounting options, and rod configurations to accommodate diverse applications. This adaptability allows hydraulic cylinders to be utilized in both industrial and mobile equipment, serving various purposes across different sectors.

4. Mounting Options:

– Hydraulic cylinders can be adapted to different mounting arrangements to suit the specific requirements of industrial and mobile equipment. They can be mounted in various orientations, including vertical, horizontal, or at an angle. Different mounting options, such as flange mounts, trunnion mounts, and clevis mounts, provide flexibility in integrating hydraulic cylinders into different equipment designs.

5. Integration with Hydraulic Systems:

– Hydraulic cylinders are often part of a larger hydraulic system that includes components such as pumps, valves, hoses, and reservoirs. These systems can be tailored to meet the specific needs of both industrial and mobile equipment. The hydraulic system’s design and configuration can be adapted to provide the necessary flow rates, pressures, and control mechanisms required for optimal performance in the intended application.

6. Control and Automation:

– Hydraulic cylinders in both industrial and mobile equipment can be integrated with control systems and automation technologies. This allows for precise and automated control of the cylinder’s movement and function. Proportional control valves, sensors, and electronic controls can be incorporated to achieve accurate positioning, speed control, and synchronization of multiple hydraulic cylinders, enhancing overall equipment performance and productivity.

7. Safety Considerations:

– Hydraulic cylinders for both industrial and mobile equipment are designed with safety in mind. They often feature built-in safety mechanisms such as overload protection, pressure relief valves, and emergency stop systems to prevent accidents and equipment damage. Safety standards and regulations specific to each industry are taken into account during the design and adaptation of hydraulic cylinders for different applications.

Overall, hydraulic cylinders offer the adaptability and performance required for use in both industrial and mobile equipment. Their versatility, customizable features, mounting options, integration capabilities, and safety considerations make them suitable for a wide range of applications across diverse industries. Whether it’s heavy-duty industrial machinery or mobile equipment operating in challenging environments, hydraulic cylinders can be adapted to meet the specific needs and requirements of various equipment types.

China Good quality Middle Cylinder Assembly Carry Accumulator Sb81 Cylinder for Hydraulic Breaker Spare Parts   vacuum pump acChina Good quality Middle Cylinder Assembly Carry Accumulator Sb81 Cylinder for Hydraulic Breaker Spare Parts   vacuum pump ac
editor by CX 2023-11-02

China wholesaler Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts with Good quality

Product Description

Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts

Product Parameters 

Model NO. MB1500 Hydraulic Breaker Front Head Product Name MB1500 MB-1500 Hydraulic Breaker Cylinder
MOQ 1 piece Material 42Crmo
Color As Required Stock Yes
Condition New Shippment Air, Sea,Express

Atlas copco Series

SB50 SB450 SBC800 TEX700
SB52 SB452 SBC850 TEX900
SB100 SB552 HB2000 TEX1400
SB102 SBC115 HB2200 TEX1800
SB150 SBC225 HB2500 TEX2000
SB152 SBC410 HB3000 PB310
SB200 SBC610 HB3100 PB420
SB300 SBC650 HB3600 PB530
HB4100/4200 TEX80 MB700/750 MB500
HB4700 TEX100 MB800 HBC6000
HB5800 TEX110 MB1000 PB110
HB7000 TEX180 MB1200 PB160
HBC1100 TEX200 MB1500 PB210
HBC1700 TEX250 TEX600 MB1600
HBC2500 TEX400 TEX75 MB1700
HBC4000      

TOKU Rock Breaker Damper Model

TNB-08M TNB-1M TNB-1E TNB-2M
TNB-2E TNB-3M TNB-3E TNB-4E
TNB-4M TNB-5M TNB-5E TNB-6M
TNB-6E TNB-6B TNB-6.5E TNB-7M
TNB-7B TNB-7E TNB-8A TNB-10E
TNB-13A TNB-13E TNB-14B TNB-14D
TNB-14E TNB-15E TNB-16B TNB-16E
TNB-22E TNB-23E TNB-30E TNB-31E
TNB-38E TNB-100 TNB-141 TNB-150
TNB-151 TNB-190 TNB-220 TNB-230
TNB-310 TNB-400    

Hot Products
If you have other breaker spare parts demand, such as Rod pin, Tool pin, Through bolt, Side bolt, Piston, Diaphragm, Seal kit, Ring bush, Front cover, Control valve, Accumulator, etc, please click the below pictures for more information, we believe we can save much of your time and be your ONE-STOP supplier.

MSB Series

MS200 MS450 MS800 XIHU (WEST LAKE) DIS.20
MS220 MS460 MS900 XIHU (WEST LAKE) DIS.30
MS225 MS500 MS1000 XIHU (WEST LAKE) DIS.40
MS250 MS520 MS35AT XIHU (WEST LAKE) DIS.50
MS255 MS550 MS45AT XIHU (WEST LAKE) DIS.55
MS300 MS600 MS55AT XIHU (WEST LAKE) DIS.81
MS400 MS700 MS75AT XIHU (WEST LAKE) DIS.100
XIHU (WEST LAKE) DIS.120 XIHU (WEST LAKE) DIS.350 XIHU (WEST LAKE) DIS.300 XIHU (WEST LAKE) DIS.210
XIHU (WEST LAKE) DIS.180 XIHU (WEST LAKE) DIS.400 XIHU (WEST LAKE) DIS.510 XIHU (WEST LAKE) DIS.220
XIHU (WEST LAKE) DIS.200 XIHU (WEST LAKE) DIS.500 XIHU (WEST LAKE) DIS.250  

FURUKAWA Series

HB35G F22 F9 F1
HB18G F17 F4 HB200
HB10G F11 F2 HB4R
HB20G F19 F5 HB300
HB15G F12 F3 HB100
HB30G F20 F6 HB400
FX15 HB8G FXJ475 HB3R
F35 HB2G FXJ175 HB05R
F27 HB5G FX360 HB40G
F45 HB3G FXJ275 HB1R
F30 HB1G FX470 HB50G
F70 HB5G FXJ375 HB2R
FX220 FX55 FX65 FX35
FX45 FX25    

SOOSA*N Series

 

SQ80 SB50 SB100 SU+55
SQ130 SB80 SB130 SU+125
SQ140 SB81 SB140 SU+145
SQ100 SB60 SB120 SU+85
SQ120 SB70 SB121 SB10
SQ150 SB81A SB145 SB35
SQ180 SB81N SB150 SB40
SB151 SU+105 SH35G SB20
SB162 SU+155 SH400 SB30
SB202 SU+165 SH700 SB43
SB152 ST200 SH40G SB45
SB160 ET300 SH200  
SH18G ST300 SQ60  
SH20G ET200 SQ70  

 

GENERAL Series

 

GB2T GB3T GB4T GB270E
GB8T GB5T GB6T GB290E
GB8AT GB9F GB130E GB300E
GB11T GB50E GB170E GB400E
GB14T GB230E GB228E GB500E

Montabert Series

BRV32 BRM900 BRH625 BRP130
BRV43 BRM1200V BRH750 BRP140
BRV45 BRM1600V BRH750 BRP150
BRV53 BRH125 BRH110 XL1700
BRV55 BRH250 BRP40 XI1900
BRV65 BRH501 BRP70  

DAEMO Series

DMB03 S3600 S45
DMB04 S500-V S2200-2
DMB4000 DMB06 S2200-1
S150-V DMB5000 S900-V
S1800-V S1300-V S2500
S3000    

 

KONAN Series

MKB500 MKB800
MKB900 MKB1200/N
MKB1300/N MKB1400/N/V
MKB1500 MKB1600
MKB1700 MKB1800

NPK Series

 

H1XA H2X/XA/XE H3XA/XE H4X/XE
GH1 H30X H12X/XE H20X/XE
GH2 GH3 H14X H11X
GH6 GH4 H16/16XE E212
GH9 GH5 GH10 GH12
GH18 E208 E18X E24X
E12X E215 E15X E213
E216 E218 E220 E225
H5X E210 H10XA/XB/XE E240
H6X/XA E212 H8X/XA GH15
H7X E224    

ATLAS COPCO Series

SB50 SB450 SBC800 HB4100/4200
SB52 SB452 SBC850 HB4700
SB100 SB552 HB2000 HB5800
SB102 SBC115 HB2200 HB7000
SB150 SBC225 HB2500 HBC1100
SB152 SBC410 HB3000 HBC1700
SB200 SBC610 HB3100 HBC2500
SB300 SBC650 HB3600 HBC4000
HBC6000 TEX80 TEX700 MB700/750
PB110 TEX100 TEX900 MB800
PB160 TEX110 TEX1400 MB1000
PB210 TEX180 TEX1800 MB1200
PB310 TEX200 TEX2000 MB1500
PB420 TEX250 MB1600  
PB530 TEX400 MB1700  
MB500 TEX600 TEX75  

And also can be supply related poducts spare parts

Seal Kit Diaphragm Chisel
Lower Bush Upper Bush Thrust Bush
Side Rod Assy Stop Pin Tie Rod
Retainer Pin Pipe Clamp Auxiliary Valve
Moil Chisel Wedge Chisel Blunt Chisel
Through Bolt Set Side Bolt Charging Valve
Back Cylinder Front Cylinder Piston
Cone Chisel Oring box Hose Pipe
Accumulator Wear Bush Coupling
Hydraulic Breaker Valve Rod Chisel Membrane

 

More Available Brand Hydraulic Hammer Model

K*RUPP HM900,HM901,HM902,HM950,HM960,etc
RAMMER S23,S24,S25,S26,E63,E64,E66,E68,G90,G100,etc
INDECO MES2500,MES3000,MES3500,MES4000,etc
EVERDIGM RHB305,RHB313,RHB320,RHB321,RHB323,RHB324,RHB325,RHB326,etc
BLT/EDT BLT80-1,BLT80-2,BLT81,BLT100/EDT2000,EDT2200,EDT3000,EDT3200,EDT3500,etc
KWANGLIM SG200,SG300,SG350,SG400,SG600,SG800,SG1800,SG2000,SG2100,SG2500,
SG2800,SG3300,SG4000,SG1200
RAMMER M300,M600,M700,M900,XL1000,,XL1300,XL1600,XL1700,XL1900,,XL1700,XL2600

About us
Koko Shop Machine Co., Ltd (EB Seals) is a professional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. We specialize in completed seal kits and separate seals for hydraulic breaker and excavator more than Ten years in HangZhou, China. Koko Shop supply almost all brands breakers’ parts like Seal kits, Diaphragm, Piston, Chisel, Wear Bush upper and lower, Rod Pin, Through Bolts, Side Bolts, Control Valve,Front Head, Cylinder, Accumulator, N2 Gas Charging Kit, etc. We insist on high quality parts with genuine and OEM after market replacement parts.

FAQ

Q1. How many days for the delivery time ?
It is about 1-7 working days after the order confirmation.

Q2. What kind of payments you accept?
Now we accept T/T,L/C or Western Union,other terms also could be negotiated,Recommended Trade Assurance to guarantee buyer’s property.

Q3. Are you able to manufacturing products according to customer’s design?
Sure,we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.

Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time,High quality products,Best customer service,Adopting the latest production technology.

Q5. Which countries have you been exported recently?
Canada,Australia,Peru,Egypt,Brazil,Mexico,South Africa,etc.

Q6. Are you sure that your product will suit for our excavator?
We have different brand hydraulic breakers. Show me your model number,and we can give you best match products.

Q7. How about the packing of the goods?
Standard export package,wood cases,or as customers’ demands.

Warranty: 3-6 Months
Type: Damper
Application: Excavator
Certification: CE
Feature: Durable
Performance: Front Head
Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle the challenges of minimizing friction and wear?

Hydraulic cylinders employ several mechanisms and techniques to effectively minimize friction and wear, ensuring optimal performance and longevity. Minimizing friction and wear is crucial for hydraulic cylinders as it helps to maintain efficiency, reduce energy consumption, and prevent premature failure. Here’s a detailed explanation of how hydraulic cylinders handle the challenges of minimizing friction and wear:

1. Lubrication:

– Proper lubrication is essential for minimizing friction and wear in hydraulic cylinders. Lubricating fluids, such as hydraulic oils, are used to create a thin film between moving surfaces, reducing direct metal-to-metal contact. This lubricating film acts as a protective barrier, reducing friction and preventing wear. Regular maintenance practices include monitoring and maintaining the appropriate lubricant levels to ensure optimal lubrication and minimize frictional losses.

2. Surface Finishes:

– The surface finishes of components in hydraulic cylinders play a crucial role in minimizing friction and wear. Smoother surface finishes, achieved through precision machining, grinding, or the application of specialized coatings, reduce surface roughness and frictional resistance. By minimizing surface irregularities, the risk of wear and friction-induced damage is significantly reduced, resulting in improved efficiency and extended component life.

3. High-Quality Sealing Systems:

– Well-designed and high-quality sealing systems are crucial for minimizing friction and wear in hydraulic cylinders. Seals prevent fluid leakage and contamination while maintaining proper lubrication. Advanced sealing materials, such as polyurethane or composite materials, offer excellent wear resistance and low friction characteristics. Optimal seal design and proper installation ensure effective sealing, minimizing friction and wear between the piston and cylinder bore.

4. Proper Alignment and Clearances:

– Hydraulic cylinders must be properly aligned and have appropriate clearances to minimize friction and wear. Misalignment or excessive clearances can result in increased friction and uneven wear, leading to premature failure. Proper installation, alignment, and maintenance practices, including regular inspection and adjustment of clearances, help ensure smooth and even movement of the piston within the cylinder, reducing friction and wear.

5. Filtration and Contamination Control:

– Effective filtration and contamination control are essential for minimizing friction and wear in hydraulic cylinders. Contaminants, such as particles or moisture, can act as abrasive agents, accelerating wear and increasing friction. By implementing robust filtration systems and proper maintenance practices, hydraulic systems can prevent the ingress of contaminants, ensuring clean and properly lubricated components. Clean hydraulic fluids help minimize wear and friction, contributing to improved performance and longevity.

6. Material Selection:

– The selection of appropriate materials for hydraulic cylinder components is crucial in minimizing friction and wear. Components subject to high frictional forces, such as pistons and cylinder bores, can be made from materials with excellent wear resistance, such as hardened steel or composite materials. Additionally, selecting materials with low coefficients of friction helps reduce frictional losses. Proper material selection ensures durability and minimized wear in critical components of hydraulic cylinders.

7. Maintenance and Regular Inspection:

– Regular maintenance and inspection practices are vital for identifying and addressing potential issues that could lead to increased friction and wear in hydraulic cylinders. Scheduled maintenance includes lubrication checks, seal inspections, and monitoring of clearances. By promptly detecting and rectifying any signs of wear or misalignment, hydraulic cylinders can be kept in optimal condition, minimizing friction and wear throughout their operational lifespan.

In summary, hydraulic cylinders employ various strategies to handle the challenges of minimizing friction and wear. These include proper lubrication, employing suitable surface finishes, utilizing high-quality sealing systems, ensuring proper alignment and clearances, implementing effective filtration and contamination control measures, selecting appropriate materials, and conducting regular maintenance and inspections. By implementing these practices, hydraulic cylinders can minimize friction and wear, ensuring smooth and efficient operation while extending the overall lifespan of the system.

hydraulic cylinder

Contribution of Hydraulic Cylinders to the Efficiency of Agricultural Tasks like Plowing

Hydraulic cylinders play a significant role in enhancing the efficiency of agricultural tasks, including plowing. By providing power, control, and versatility, hydraulic cylinders enable agricultural machinery to perform tasks more effectively and with greater precision. Let’s explore how hydraulic cylinders contribute to the efficiency of plowing and other agricultural tasks:

  1. Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, making them ideal for tasks that require substantial power, such as plowing. The hydraulic system provides pressurized fluid to the cylinders, which convert this hydraulic energy into mechanical force. This force is then utilized to drive plow blades through the soil, overcoming resistance and facilitating efficient soil penetration.
  2. Adjustable Working Depth: Hydraulic cylinders allow for easy and precise adjustment of plow working depth. By controlling the extension or retraction of the hydraulic cylinder, the depth of the plow blades can be adjusted according to soil conditions, crop requirements, or the farmer’s preferences. This adjustability enhances efficiency by ensuring optimal soil tillage and minimizing unnecessary energy expenditure.
  3. Responsive Control: Hydraulic systems offer highly responsive control, enabling farmers to make quick adjustments during plowing operations. Hydraulic cylinders respond rapidly to changes in hydraulic pressure and valve settings, allowing for immediate modifications in the plow’s position, depth, or angle. This responsiveness enhances efficiency by facilitating on-the-go adjustments based on soil variations, obstacles, or changing field conditions.
  4. Implement Versatility: Hydraulic cylinders enable the attachment of various implements to agricultural machinery, expanding their functionality and versatility. In the case of plowing, hydraulic cylinders allow for the attachment and detachment of plow blades or other tillage implements. This versatility enables farmers to adapt their equipment to different soil types, field sizes, or specific plowing requirements, enhancing efficiency by maximizing the utility of the machinery.
  5. Efficient Time Management: Hydraulic cylinders contribute to time efficiency in agricultural tasks like plowing. With hydraulic systems, farmers can operate plows at higher speeds while maintaining control and precision. The responsive nature of hydraulic cylinders allows for efficient turning, maneuvering, and repositioning of plows, minimizing downtime and optimizing field coverage. This time efficiency translates into increased productivity and reduced overall operational costs.

In summary, hydraulic cylinders significantly contribute to the efficiency of agricultural tasks like plowing. Through powerful force generation, adjustable working depth, responsive control, implement versatility, and efficient time management, hydraulic systems equipped with cylinders enhance the performance and productivity of agricultural machinery. These contributions allow farmers to accomplish plowing tasks more effectively, optimize field operations, and achieve improved overall efficiency in their agricultural practices.

hydraulic cylinder

How do hydraulic cylinders handle variations in load, pressure, and speed?

Hydraulic cylinders are designed to handle variations in load, pressure, and speed effectively. They incorporate features and components that allow them to adapt to changing operating conditions and maintain optimal performance. Here’s a detailed explanation of how hydraulic cylinders handle variations in load, pressure, and speed:

Variations in Load:

– Hydraulic cylinders are capable of handling variations in load by adjusting the force they exert. The force output of a hydraulic cylinder is determined by the hydraulic pressure and the surface area of the piston. When the load increases, the pressure in the hydraulic system can be adjusted to generate a higher force. This adjustment can be achieved by regulating the flow of hydraulic fluid into the cylinder using control valves. By controlling the pressure and flow, hydraulic cylinders can adapt to different load requirements, ensuring that the force applied is sufficient to handle the load while preventing excessive force that could cause damage.

Variations in Pressure:

– Hydraulic cylinders are designed to handle variations in pressure within the hydraulic system. They are equipped with seals and other components that can withstand high-pressure conditions. When the pressure within the hydraulic system fluctuates, the hydraulic cylinder adjusts accordingly to maintain its performance. The seals prevent fluid leakage and ensure that the hydraulic pressure is effectively transmitted to the piston, allowing the cylinder to generate the required force. Additionally, hydraulic systems often incorporate pressure relief valves and other safety mechanisms to protect the cylinder and the entire system from overpressure conditions.

Variations in Speed:

– Hydraulic cylinders can handle variations in speed through the control of hydraulic fluid flow. The speed of a hydraulic cylinder’s extension or retraction is determined by the rate at which hydraulic fluid enters or exits the cylinder. By adjusting the flow rate using flow control valves, the speed of the cylinder’s movement can be regulated. This allows for precise control over the speed, enabling operators to adapt to varying speed requirements based on the specific task or load. Furthermore, hydraulic systems can incorporate flow control valves with adjustable orifice sizes to fine-tune the speed of the cylinder’s movement.

Load-Sensing Technology:

– Advanced hydraulic systems may incorporate load-sensing technology to further enhance the ability of hydraulic cylinders to handle variations in load, pressure, and speed. Load-sensing systems monitor the load demand and adjust the hydraulic pressure and flow accordingly to meet that demand. This technology ensures that the hydraulic cylinder provides the necessary force while optimizing energy efficiency. Load-sensing systems are particularly beneficial in applications where the load requirements can vary significantly, allowing hydraulic cylinders to adapt in real-time and maintain precise control over force and speed.

Accumulators:

– Hydraulic systems can also utilize accumulators to assist in handling variations in load, pressure, and speed. Accumulators store hydraulic fluid under pressure, which can be released when needed to supplement the flow and pressure in the system. When there are sudden increases in load or pressure demands, accumulators can provide additional fluid to the hydraulic cylinder, ensuring smooth operation and preventing pressure drops. Similarly, accumulators can assist in maintaining consistent speed by compensating for fluctuations in flow rate. They act as a supplemental energy source, helping hydraulic cylinders respond effectively to variations in operating conditions.

In summary, hydraulic cylinders handle variations in load, pressure, and speed through various mechanisms and components. They can adjust the force output to accommodate different load requirements by regulating hydraulic pressure. The seals and components within hydraulic cylinders allow them to withstand variations in pressure within the hydraulic system. By controlling the flow of hydraulic fluid, hydraulic cylinders can regulate the speed of their movement. Advanced technologies such as load-sensing systems and the use of accumulators further enhance the adaptability of hydraulic cylinders to changing operating conditions. These features and mechanisms enable hydraulic cylinders to maintain optimal performance and provide reliable force and motion control in a wide range of applications.

China wholesaler Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts   with Good quality China wholesaler Hammer Cylinder MB1500 Hydraulic Breaker Front Head for Rock Hammer Spare Parts   with Good quality
editor by CX 2023-11-02

China Professional Hydraulic Breaker Main Body Front Head Back Head Cylinder Assy Front Guide China OEM Factory Manufacturer Suppliers Forsb10 Sb20 Sb30 Sb35 Sb40 Sb43 Sb50 Sb60 vacuum pump oil

Product Description

Company Introduction:

Company license,certificates,exhibition photos and customers feedbacks:

Production process:

Popular models for world market:

Breaker Parameter:

 Products photos:

product-list-1.html product-list-1.html

WARRANTY: ONE YEAR

Welcome to inquiry and please contact us freely!
contact-info.html

 

After-sales Service: with Warranty
Warranty: One Year
Application: Excavator
Condition: New
Quality: Long Life ,Powerful,Wearable and Stable
Waranty: One Year
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders ensure smooth and consistent movement in heavy machinery?

Hydraulic cylinders play a vital role in ensuring smooth and consistent movement in heavy machinery. Their design and operation allow for precise control over the motion of heavy loads, resulting in efficient and reliable performance. Here’s a detailed explanation of how hydraulic cylinders contribute to smooth and consistent movement in heavy machinery:

1. Hydraulic Fluid and Pressure:

– Hydraulic cylinders operate by utilizing hydraulic fluid, typically oil, to transmit force and motion. The fluid is pressurized by a hydraulic pump, creating a force that acts on the piston inside the cylinder. The pressure of the hydraulic fluid can be precisely controlled, allowing for smooth and gradual movement of heavy machinery. The fluid’s incompressibility ensures that the force is evenly distributed, resulting in consistent and predictable motion.

2. Piston and Cylinder Design:

– Hydraulic cylinders are designed with precision to ensure smooth movement. The piston and cylinder bore are machined to tight tolerances, reducing friction and minimizing internal leakage. This precise fit between the piston and cylinder walls helps maintain consistent motion without jerks or sudden changes in speed. Additionally, the use of high-quality seals and lubrication further enhances the smooth operation of the cylinder.

3. Control Valves and Flow Control:

– Hydraulic systems incorporate control valves that regulate the flow of hydraulic fluid into and out of the cylinder. These valves allow for precise control over the speed and direction of the cylinder’s movement. By adjusting the flow rate, operators can achieve smooth and controlled motion of heavy machinery, avoiding sudden starts or stops. Flow control valves also enable speed adjustment, ensuring consistent movement even under varying loads or operating conditions.

4. Cushioning and Damping:

– Hydraulic cylinders can be equipped with cushioning mechanisms to absorb shock and minimize impacts during the movement of heavy machinery. Cushioning is achieved by incorporating specialized valves or adjustable orifices in the cylinder, which restrict the flow of hydraulic fluid near the end of the stroke. This gradual deceleration helps prevent sudden jolts or vibrations, maintaining smooth and consistent movement while reducing stress on the machinery and its components.

5. Load Balancing:

– Hydraulic cylinders can be designed and arranged in a system to balance the load and distribute forces evenly. By utilizing multiple cylinders in parallel or series configurations, heavy machinery can achieve balanced movement, preventing uneven stress and ensuring smooth operation. Load balancing also helps minimize the risk of component failure and enhances the overall stability and longevity of the machinery.

6. Feedback and Control Systems:

– Advanced hydraulic systems incorporate feedback sensors and control systems to monitor and adjust the movement of heavy machinery. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly to maintain smooth and consistent movement. By continuously monitoring and regulating the cylinder’s operation, feedback and control systems contribute to precise and reliable motion control.

7. Maintenance and Servicing:

– Regular maintenance and servicing of hydraulic cylinders are essential to ensure their smooth and consistent movement in heavy machinery. Proper lubrication, inspection of seals, and replacement of worn-out components help maintain optimal performance. Preventive maintenance practices, such as filter replacements and fluid analysis, also contribute to the longevity and reliability of hydraulic systems, ensuring consistent movement over time.

In summary, hydraulic cylinders ensure smooth and consistent movement in heavy machinery through the use of hydraulic fluid and pressure, precise piston and cylinder design, control valves and flow control, cushioning and damping mechanisms, load balancing, feedback and control systems, and regular maintenance and servicing. By leveraging these features, hydraulic cylinders provide the necessary force and control to handle heavy loads while maintaining precise and reliable motion, enhancing the overall performance and productivity of heavy machinery in various industrial applications.

hydraulic cylinder

How do hydraulic cylinders contribute to the efficiency of agricultural tasks like plowing?

Hydraulic cylinders play a crucial role in improving the efficiency of agricultural tasks, including plowing. These cylinders provide several benefits that enhance the performance and productivity of agricultural machinery. Let’s explore how hydraulic cylinders contribute to the efficiency of plowing and other agricultural tasks:

  1. Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, which is essential for tasks like plowing. The hydraulic system supplies pressurized fluid to the cylinders, converting hydraulic energy into mechanical force. This force is then utilized to drive plow blades through the soil, overcoming resistance and facilitating efficient soil penetration. The power generated by hydraulic cylinders ensures effective plowing, even in tough or compacted soil conditions.
  2. Adjustable Working Depth: Hydraulic cylinders allow for easy and precise adjustment of the plow’s working depth. By controlling the extension or retraction of the hydraulic cylinder, farmers can adjust the depth of the plow blades according to soil conditions, crop requirements, or their specific preferences. This adjustability enhances efficiency by ensuring optimal soil tillage and minimizing unnecessary energy expenditure. Farmers can adapt the plowing depth to different field areas, optimizing the use of resources and promoting uniform crop growth.
  3. Responsive Control: Hydraulic systems offer highly responsive control, enabling farmers to make quick adjustments during plowing operations. Hydraulic cylinders respond rapidly to changes in hydraulic pressure and valve settings, allowing for immediate modifications in the plow’s position, depth, or angle. This responsiveness enhances efficiency by facilitating on-the-go adjustments based on soil variations, obstacles, or changing field conditions. Farmers can maintain precise control over the plow’s performance, ensuring effective soil tillage and minimizing the risk of crop damage.
  4. Implement Versatility: Hydraulic cylinders enable the attachment of various implements to agricultural machinery, expanding their functionality and versatility. In the context of plowing, hydraulic cylinders allow for the attachment and detachment of plow blades or other tillage implements. This versatility enables farmers to adapt their equipment to different soil types, field sizes, or specific plowing requirements. By using hydraulic cylinders, farmers can easily switch between different implements, optimizing their equipment for specific tasks and maximizing efficiency.
  5. Efficient Time Management: Hydraulic cylinders contribute to time efficiency in agricultural tasks like plowing. With hydraulic systems, farmers can operate plows at higher speeds while maintaining control and precision. The responsive nature of hydraulic cylinders allows for efficient turning, maneuvering, and repositioning of plows, minimizing downtime and optimizing field coverage. This time efficiency translates into increased productivity and reduced overall operational costs. Farmers can accomplish plowing tasks more quickly, allowing them to cover larger field areas in less time.

In summary, hydraulic cylinders significantly contribute to the efficiency of agricultural tasks like plowing. Through powerful force generation, adjustable working depth, responsive control, implement versatility, and efficient time management, hydraulic systems equipped with cylinders enhance the performance and productivity of agricultural machinery. These contributions allow farmers to accomplish plowing tasks more effectively, optimize field operations, and achieve improved overall efficiency in their agricultural practices.

hydraulic cylinder

How do hydraulic cylinders generate force and motion using hydraulic fluid?

Hydraulic cylinders generate force and motion by utilizing the principles of fluid mechanics, specifically Pascal’s law, in conjunction with the properties of hydraulic fluid. The process involves the conversion of hydraulic energy into mechanical force and linear motion. Here’s a detailed explanation of how hydraulic cylinders achieve this:

1. Pascal’s Law:

– Hydraulic cylinders operate based on Pascal’s law, which states that when pressure is applied to a fluid in a confined space, it is transmitted equally in all directions. In the context of hydraulic cylinders, this means that when hydraulic fluid is pressurized, the force is evenly distributed throughout the fluid and transmitted to all surfaces in contact with the fluid.

2. Hydraulic Fluid and Pressure:

– Hydraulic systems use a specialized fluid, typically hydraulic oil, as the working medium. This fluid is stored in a reservoir and circulated through the system by a hydraulic pump. The pump pressurizes the fluid, creating hydraulic pressure that can be controlled and directed to various components, including hydraulic cylinders.

3. Cylinder Design and Components:

– Hydraulic cylinders consist of several key components, including a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.

4. Fluid Input and Motion:

– To generate force and motion, hydraulic fluid is directed into one side of the cylinder, creating pressure on the corresponding surface of the piston. This pressure is transmitted through the fluid to the other side of the piston.

5. Force Generation:

– The force generated by a hydraulic cylinder is a result of the pressure applied to a specific surface area of the piston. The force exerted by the hydraulic cylinder can be calculated using the formula: Force = Pressure × Area. The area is determined by the diameter of the piston or the piston rod, depending on which side of the cylinder the fluid is acting upon.

6. Linear Motion:

– As the pressurized hydraulic fluid acts on the piston, it generates a force that moves the piston in a linear direction within the cylinder. This linear motion is transferred to the piston rod, which extends or retracts accordingly. The piston rod can be connected to external components or machinery, allowing the generated force to perform various tasks, such as lifting, pushing, pulling, or controlling mechanisms.

7. Control and Regulation:

– The force and motion generated by hydraulic cylinders can be controlled and regulated by adjusting the flow of hydraulic fluid into the cylinder. By regulating the flow rate, pressure, and direction of the fluid, the speed, force, and direction of the cylinder’s movement can be precisely controlled. This control allows for accurate positioning, smooth operation, and synchronization of multiple cylinders in complex machinery.

8. Return and Recirculation of Fluid:

– After the hydraulic cylinder completes its stroke, the hydraulic fluid on the opposite side of the piston needs to be returned to the reservoir. This is typically achieved through hydraulic valves that control the flow direction, allowing the fluid to return and be recirculated in the system for further use.

In summary, hydraulic cylinders generate force and motion by utilizing the principles of Pascal’s law. Pressurized hydraulic fluid acts on the piston, creating force that moves the piston in a linear direction. This linear motion is transferred to the piston rod, allowing the generated force to perform various tasks. By controlling the flow of hydraulic fluid, the force and motion of hydraulic cylinders can be precisely regulated, contributing to their versatility and wide range of applications in machinery.

China Professional Hydraulic Breaker Main Body Front Head Back Head Cylinder Assy Front Guide China OEM Factory Manufacturer Suppliers Forsb10 Sb20 Sb30 Sb35 Sb40 Sb43 Sb50 Sb60   vacuum pump oil	China Professional Hydraulic Breaker Main Body Front Head Back Head Cylinder Assy Front Guide China OEM Factory Manufacturer Suppliers Forsb10 Sb20 Sb30 Sb35 Sb40 Sb43 Sb50 Sb60   vacuum pump oil
editor by CX 2023-10-12

China high quality Middle Cylinder Assembly Carry Accumulator Sb81 Cylinder for Hydraulic Breaker Spare Parts vacuum pump diy

Product Description

Middle Cylinder Assembly Carry Accumulator SB81 Cylinder for Hydraulic Breaker Spare Parts

Product Information

Product Name Middle Cylinder Assembly Cylinder OEM Welcome
Size Standard Size MOQ 1 set
Application SOOSA*N Hammer Breaker Color Standard or OEM
Material Rubber/PU Brand SOOSA*N
Model SB81 SB-81 SB81 Condition 100% New 

 

SOOSA*N Series

SQ80 SB50 SB100 SU+55 SB151 SH35G SB10 ST200
SQ130 SB80 SB130 SU+125 SB162 SH400 SB35 ET300
SQ140 SB81 SB140 SU+145 SB202 SH700 SB40 ST300
SQ100 SB60 SB120 SU+85 SB152 SH40G SB20 ET200
SQ120 SB70 SB121 SU+105 SB160 SH200 SB30  
SQ150 SB81A SB145 SU+155 SH18G SQ60 SB43  
SQ180 SB81N SB150 SU+165 SH20G SQ70 SB45  

TOKU Rock Breaker Cylinder Model

TNB-08M TNB-1M TNB-1E TNB-2M TNB-2E
TNB-3M TNB-3E TNB-4E TNB-4M TNB-5M
TNB-5E TNB-6M TNB-6E TNB-6B TNB-6.5E
TNB-7M TNB-7B TNB-7E TNB-8A TNB-10E
TNB-13A TNB-13E TNB-14B TNB-14D TNB-14E
TNB-15E TNB-16B TNB-16E TNB-22E TNB-23E
TNB-30E TNB-31E TNB-38E TNB-100 TNB-141
TNB-150 TNB-151 TNB-190 TNB-220 TNB-230
TNB-310 TNB-400      

 

KONAN Series

MKB500 MKB800
MKB900 MKB1200/N
MKB1300/N MKB1400/N/V
MKB1500 MKB1600
MKB1700 MKB1800

GENERAL Series

GB2T GB3T GB4T GB270E
GB8T GB5T GB6T GB290E
GB8AT GB9F GB130E GB300E
GB11T GB50E GB170E GB400E
GB14T GB230E GB228E GB500E

FINE Series Seal Kit

FINE10 FINE8 FINE6 FINE7 FINE12 FINE5
FINE23 FINE22 FINE20 FINE21 FINE25 FINE15
FINE45 FINE40 FINE35 FINE36 FINE50 FINE30
FINE4          

DAEMO Series

DMB03 S3600 S45
DMB04 S500-V S2200-2
DMB4000 DMB06 S2200-1
S150-V DMB5000 S900-V
S1800-V S1300-V S2500
S3000    

MSB Series

MS-200 MS-450 MS-800 XIHU (WEST LAKE) DIS.-20 XIHU (WEST LAKE) DIS.-120 XIHU (WEST LAKE) DIS.-350
MS-220 MS-460 MS-900 XIHU (WEST LAKE) DIS.-30 XIHU (WEST LAKE) DIS.-180 XIHU (WEST LAKE) DIS.-400
MS-225 MS-500 MS-1000 XIHU (WEST LAKE) DIS.-40 XIHU (WEST LAKE) DIS.-200 XIHU (WEST LAKE) DIS.-500
MS-250 MS-520 MS-35AT XIHU (WEST LAKE) DIS.-50 XIHU (WEST LAKE) DIS.-210 XIHU (WEST LAKE) DIS.-510
MS-255 MS-550 MS-45AT XIHU (WEST LAKE) DIS.-55 XIHU (WEST LAKE) DIS.-220  
MS-300 MS-600 MS-55AT XIHU (WEST LAKE) DIS.-81 XIHU (WEST LAKE) DIS.-250  
MS-400 MS-700 MS-75AT XIHU (WEST LAKE) DIS.-100 XIHU (WEST LAKE) DIS.-300  

HANWOOD Series

RHB301 RHB320 RHB313 RHB321 RHB335
RHB302 RHB304 RHB309 RHB307 RHB340
RHB303 RHB305 RHB306 RHB308 RHB350
RHB322 RHB323 RHB325 RHB326  
RHB328 RHB330 RHB332 RHB334  

KOMAST*U Series

JTHB100 JTHB150 JTHB190 JTHB230 JTHB230-1 JTHB310

OKADA Series

UB2 UB4 UB5 UB7 UB8
UB8A UB8A1 UB8A2 UB10 UB11
UB11A UB11A1 UB11A2 UB14 UB14A2
OUB303 OUB303A OUB304 OUB305 OUB305A
OUB306 OUB308 OUB308A OUB309 OUB310
OUB312 OUB312A OUB312B OUB316 OUB318
OUB512 TOP21LT TOP21H TOP25 TOP25A
TOP30 TOP31 TOP35 TOP35B TOP40
TOP45 TOP45B TOP55 TOP55B TOP60
TOP60B TOP90 TOP100 TOP100A TOP150
UB17 OUB301 OUB301A OUB302 OUB302A
TOP200 TOP205 TOP205B TOP210 TOP250
TOP270 TOP295 TOP300 TOP400 TOP700
TOP800 TOP1300 TOP1500 TOP2600 TOP3600
ORV250LT ORV250H ORV400 ORV550 ORV800S
ORV1000 ORV1300 ORV2500 ORV3000 ORV4000
ORV5000 ORV7500 ORV10000    

NPK Series

H-1XA H-2X/XA/XE H-3XA/XE H-4X/XE H-5X H-10XA/XB/XE
GH-1 H-30X H-12X/XE H-20X/XE H-6X/XA H-8X/XA
GH-2 GH-3 H-14X H-11X H-7X  
GH-6 GH-4 H-16/16XE E-212 E-240  
GH-9 GH-5 GH-10 GH-12 GH-15  
GH-18 E-208 E-18X E-24X E-210  
E-12X E-215 E-15X E-213 E-212  
E-216 E-218 E-220 E-225 E-224  

ATLAS COPCO Series

SB-50 SB-450 SBC-800 HB-4100/4200 HBC-6000 MB-700/750 TEX-80 TEX-700
SB-52 SB-452 SBC-850 HB-4700 PB-110 MB-800 TEX-100 TEX-900
SB-100 SB-552 HB-2000 HB-5800 PB-160 MB-1000 TEX-110 TEX-1400
SB-102 SBC-115 HB-2200 HB-7000 PB-210 MB-1200 TEX-180 TEX-1800
SB-150 SBC-225 HB-2500 HBC-1100 PB-310 MB-1500 TEX-200 TEX-2000
SB-152 SBC-410 HB-3000 HBC-1700 PB-420 MB-1600 TEX-250  
SB-200 SBC-610 HB-3100 HBC-2500 PB-530 MB-1700 TEX-400  
SB-300 SBC-650 HB-3600 HBC-4000 MB-500 TEX-75 TEX-600  

 

More Available Brand Hydraulic Hammer Model

MONTABERT BRH125,BRH250,BRH501,BRH625,SC12,BRV32,BRV43,etc
K*RUPP HM900,HM901,HM902,HM950,HM960,etc
RAMMER S23,S24,S25,S26,E63,E64,E66,E68,G90,G100,etc
INDECO MES2500,MES3000,MES3500,MES4000,etc
TOKU/T*OYO TNB 5E6E7E8E10E,TNB150151,TNB310,THBB301,THBB401,THBB801,
EVERDIGM RHB305,RHB313,RHB320,RHB321,RHB323,RHB324,RHB325,RHB326,etc
BLT/EDT BLT80-1,BLT80-2,BLT81,BLT100/EDT2000,EDT2200,EDT3000,EDT3200,EDT3500,etc
KWANGLIM SG200,SG300,SG350,SG400,SG600,SG800,SG1800,SG2000,SG2100,SG2500,
SG2800,SG3300,SG4000,SG1200
MONTABERT SC28,BRP130,BRP140,BRP150,V32,V43,V45,V53,V55,V1200,v1600,V2500,
BRH125,BRH270,BRH501,BRH570,BRH250,BRH625,BRH750,BRH1100
RAMMER M300,M600,M700,M900,XL1000,,XL1300,XL1600,XL1700,XL1900,,XL1700,XL2600

And also can be supply related poducts spare parts

Seal Kit Diaphragm Chisel
Lower Bush Upper Bush Thrust Bush
Side Rod Assy Stop Pin Tie Rod
Retainer Pin Pipe Clamp Auxiliary Valve
Moil Chisel Wedge Chisel Blunt Chisel
Through Bolt Set Side Bolt Charging Valve
Back Cylinder Front Cylinder Piston
Cone Chisel Oring box Hose Pipe
Accumulator Wear Bush Coupling
Hydraulic Breaker Valve Rod Chisel Membrane

Hot Sales
If you have other breaker spare parts demand, such as Rod pin, aTool pin, Through bolt, Side bolt, Piston, Diaphragm, Seal kit, Ring bush, Front cover, Control valve, Accumulator, etc, please click the below picture for more information, we believe we can save much of your time and be your ONE-STOP supplier.

Real Shop show

Now you can stop searching and comparison, I bet our factory can be your best choice. WHY?

First,Stable quality in various actual fields worldwide
Our chisels have been supplied to over 70 companies of more than 30 countries
Certificate such as CE, ISO, can also be a proof of our quality.

Second,Well equipped production facility.
We have own manufacturing factories for hydraulic breaker parts.
and it with an up-to-date production facility for high-end hydraulic breaker, chisel, and spare parts

Third,we have pistons for the following hydraulic breaker/hammers:
you can also send us your drawing for mass customized production
 
Fourth,Quality Assurance
Every working procedure would influence the product quality, thus each working procedure should
sustaining testing on our production lines.  Our warranty policy could make you rest easy.

Hence, Xihu (West Lake) Dis.an is available to show you our product range and guide you in the choice of the products that best fit your needs,

FAQ
Q1. How many days for the delivery time ?
It is about 1-7 working days after the order confirmation.

Q2. What kind of payments you accept?
Now we accept T/T,L/C or Western Union,other terms also could be negotiated,Recommended Trade Assurance to guarantee buyer’s property.

Q3. Are you able to manufacturing products according to customer’s design?
Sure,we have made many special orders from oversea for 10 years since 2571. So we have enough ability to deal with any cases. OEM certificate is available to provided.

Q4. What’s your advantages in the machinery manufacturing industry?
Fast delivery time,High quality products,Best customer service,Adopting the latest production technology.

Q5. Which countries have you been exported recently?
Canada,Australia,Peru,Egypt,Brazil,Mexico,South Africa,etc.

Q6. Are you sure that your product will my hydraulic breaker?
We have different brand hydraulic breakers. Show me your model number,and we can give you best match products.

Q7. How about the packing of the goods?
Standard export package,wood cases,or as customers’ demands.

 

Warranty: 3-6 Months
Type: Cylinder
Certification: ISO9001: 2000
Condition: New
OEM: Available
MOQ: 1 Piece
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be used for precise operations like CNC machining or molding?

Yes, hydraulic cylinders can be used for precise operations like CNC machining or molding. While hydraulic systems are commonly associated with heavy-duty applications, they can also provide the necessary precision and control required for precise operations in CNC machining and molding processes. Here’s a detailed explanation of how hydraulic cylinders can be utilized for such precise operations:

1. Force and Control:

– Hydraulic cylinders are capable of generating substantial force, which is essential for precise operations in CNC machining and molding. By using hydraulic pressure, the cylinders can deliver the required force to cut or shape materials accurately or exert pressure for molding operations. The hydraulic system allows precise control over the force applied, ensuring consistent and reliable performance.

2. Adjustable Speed and Positioning:

– Hydraulic cylinders offer adjustable speed and precise positioning capabilities, making them suitable for precise operations. By controlling the flow of hydraulic fluid, the speed of the cylinder’s movement can be adjusted according to specific requirements. This adaptability allows for fine-tuning the machining or molding process, achieving the desired precision in material removal or shaping. Hydraulic systems also enable accurate positioning of tools or molds, ensuring precise operations.

3. Integrated Feedback Systems:

– Advanced hydraulic systems can incorporate feedback sensors and control mechanisms to enhance precision in CNC machining and molding. These sensors provide real-time information about the position, speed, and force exerted by the hydraulic cylinders. The control system processes this data and adjusts the flow of hydraulic fluid accordingly, allowing for precise and accurate control over the operations. The feedback systems help maintain consistent performance and compensate for any deviations, ensuring high precision.

4. Damping and Vibration Control:

– Hydraulic cylinders can be equipped with damping mechanisms to minimize vibrations and ensure stability during CNC machining or molding operations. Vibrations can negatively impact precision by causing tool chatter or material deformation. By incorporating cushioning or damping features, hydraulic cylinders help absorb shocks and suppress vibrations, resulting in smoother and more accurate operations.

5. Customization and Adaptability:

– Hydraulic cylinders can be customized and adapted to meet the specific requirements of CNC machining or molding processes. Engineers can design cylinders with unique dimensions, stroke lengths, mounting options, and sealing arrangements to fit into equipment or systems with precise specifications. Customized hydraulic cylinders ensure optimal performance and compatibility for precise operations, enabling seamless integration into CNC machines or molding equipment.

6. Energy Efficiency:

– Hydraulic systems can be designed to be energy-efficient, contributing to cost savings in CNC machining or molding operations. By utilizing variable speed pumps, efficient control valves, and well-designed hydraulic circuits, energy consumption can be optimized. This efficiency reduces heat generation, leading to improved stability and precision in operations while minimizing energy costs.

7. Maintenance and Calibration:

– Regular maintenance and calibration of hydraulic systems are essential to maintain their precision in CNC machining or molding applications. Proper lubrication, inspection of seals, and replacement of worn-out components help ensure optimal performance. Regular calibration of control systems and feedback sensors ensures accurate readings and reliable operation, contributing to precision in machining or molding processes.

In summary, hydraulic cylinders can be effectively used for precise operations like CNC machining or molding. Their ability to generate substantial force, adjustable speed and positioning, integration with feedback systems, damping and vibration control, customization and adaptability, energy efficiency, and proper maintenance contribute to achieving the required precision in these operations. By leveraging the strengths of hydraulic systems, manufacturers can enhance the accuracy and reliability of CNC machining or molding processes, resulting in high-quality products and improved productivity.

hydraulic cylinder

Can you provide real-world examples of machinery that heavily rely on hydraulic cylinders?

Hydraulic cylinders are widely used in various industries and applications due to their ability to provide powerful and precise linear motion. They play a crucial role in enabling the operation of heavy machinery that requires controlled force and movement. Here are some real-world examples of machinery that heavily rely on hydraulic cylinders:

1. Construction Equipment:

– Hydraulic cylinders are extensively used in construction machinery, such as excavators, bulldozers, loaders, and cranes. These machines rely on hydraulic cylinders to perform tasks like lifting heavy loads, extending and retracting booms, tilting buckets, and controlling the movement of various components. Hydraulic cylinders provide the power and precision required to handle the demanding conditions and heavy loads encountered in construction projects.

2. Agricultural Machinery:

– Many agricultural machines, including tractors, combine harvesters, and sprayers, utilize hydraulic cylinders for critical operations. Hydraulic cylinders are used to control the movement of attachments, such as front loaders, backhoes, and plows. They enable functions like lifting and lowering implements, adjusting cutting heights, and controlling the positioning of harvesting equipment. Hydraulic cylinders enhance efficiency and productivity in agricultural operations.

3. Material Handling Equipment:

– Hydraulic cylinders are integral components of material handling equipment, such as forklifts, pallet jacks, and cranes. These machines rely on hydraulic cylinders to lift and lower loads, tilt platforms or forks, and control the movement of lifting mechanisms. Hydraulic cylinders provide the necessary strength and precision to handle heavy loads and ensure safe and efficient material handling operations.

4. Industrial Machinery:

– Various industrial machinery and equipment heavily rely on hydraulic cylinders for critical functions. Examples include hydraulic presses, injection molding machines, metal-forming machines, and hydraulic-powered robots. Hydraulic cylinders enable precise control of force and movement in these applications, allowing for accurate shaping, pressing, and assembly processes.

5. Mining Equipment:

– Hydraulic cylinders are extensively used in mining machinery and equipment. Underground mining machines, such as continuous miners and longwall shearers, utilize hydraulic cylinders for cutting, shearing, and roof support operations. Surface mining equipment, including hydraulic shovels, draglines, and haul trucks, rely on hydraulic cylinders for tasks like bucket movement, boom extension, and vehicle suspension.

6. Automotive Industry:

– The automotive industry extensively utilizes hydraulic cylinders in various applications. Hydraulic cylinders are employed in vehicle suspension systems, power steering systems, convertible tops, and hydraulic brake systems. They enable smooth and controlled movement, precise steering, and efficient braking in automobiles.

7. Aerospace and Aviation:

– Hydraulic cylinders are utilized in aerospace and aviation applications, such as aircraft landing gear systems, wing flaps, and cargo handling equipment. Hydraulic cylinders provide the necessary force and control for extending and retracting landing gear, adjusting wing flaps, and operating cargo doors, ensuring safe and reliable aircraft operations.

8. Marine and Offshore Industry:

– Hydraulic cylinders are essential components in marine and offshore equipment, including ship cranes, winches, and hydraulic-powered anchor systems. They enable lifting, lowering, and positioning of heavy loads, as well as the control of various marine equipment.

These are just a few examples of machinery and industries that heavily rely on hydraulic cylinders. The versatility, power, and precise control offered by hydraulic cylinders make them indispensable in a wide range of applications, where controlled linear motion and force are essential.

hydraulic cylinder

How do hydraulic cylinders contribute to the efficiency of heavy machinery like excavators?

Hydraulic cylinders play a crucial role in enhancing the efficiency and performance of heavy machinery, such as excavators. These powerful hydraulic actuators enable excavators to perform various tasks efficiently and effectively. Here’s a detailed explanation of how hydraulic cylinders contribute to the efficiency of heavy machinery like excavators:

1. Force and Power:

– Hydraulic cylinders provide the necessary force and power required for the excavation process. They convert hydraulic energy from the hydraulic fluid into linear mechanical force, allowing the excavator to exert significant pushing and pulling forces. The force generated by hydraulic cylinders enables the digging arm or boom of the excavator to penetrate and break through tough materials, such as soil, rocks, or concrete, with ease and efficiency.

2. Precise Control:

– Hydraulic cylinders offer precise control over the movement of excavator components. By regulating the flow of hydraulic fluid to the cylinders, operators can control the speed, direction, and positioning of the excavator’s arm, boom, bucket, and other attachments. This precise control allows operators to perform delicate operations, such as fine grading or precise material placement, with accuracy and efficiency.

3. Versatility and Adaptability:

– Hydraulic cylinders enable excavators to perform a wide range of tasks by facilitating the quick and easy interchangeability of attachments. Excavators can be equipped with various specialized attachments, including buckets, breakers, grapples, and augers, which can be efficiently connected and disconnected using hydraulic cylinders. This versatility and adaptability enhance the efficiency of excavators by enabling them to tackle different tasks without the need for extensive manual adjustments or downtime.

4. Increased Productivity:

– The power and control provided by hydraulic cylinders significantly increase the productivity of excavators. Excavators equipped with hydraulic cylinders can complete tasks more quickly and efficiently compared to manual or mechanically-driven machinery. The precise control over movements allows for faster cycle times, reduced idle time, and improved overall productivity on the worksite.

5. Enhanced Digging and Lifting Capabilities:

– Hydraulic cylinders enable excavators to perform digging and lifting operations with enhanced capabilities. The force generated by hydraulic cylinders allows excavators to dig deeper and lift heavier loads compared to other types of machinery. This increased digging and lifting capacity contributes to the efficiency of excavators by reducing the number of passes required to complete a task and improving overall productivity.

6. Durability and Reliability:

– Hydraulic cylinders are designed to withstand heavy loads, challenging operating conditions, and frequent use. They are built with robust materials, such as high-strength steel, and undergo stringent quality control measures during manufacturing. The durability and reliability of hydraulic cylinders ensure that excavators can operate efficiently even in demanding environments, minimizing downtime and maximizing productivity.

7. Energy Efficiency:

– Hydraulic systems, including hydraulic cylinders, are known for their energy efficiency. Hydraulic cylinders can deliver high force outputs while consuming relatively low amounts of hydraulic fluid. This energy efficiency translates to lower fuel consumption and reduced operating costs for excavators. The efficient use of hydraulic power contributes to the overall efficiency and sustainability of heavy machinery operations.

8. Safety:

– Hydraulic cylinders play a vital role in ensuring the safety of excavator operations. They provide controlled and predictable movements, reducing the risk of sudden or uncontrolled motions. The precise control offered by hydraulic cylinders allows operators to perform tasks safely and accurately, minimizing the chances of accidents or damage to the machinery or surrounding environment.

Overall, hydraulic cylinders are essential components that significantly contribute to the efficiency of heavy machinery like excavators. By providing force, precise control, versatility, increased productivity, enhanced capabilities, durability, energy efficiency, and safety, hydraulic cylinders enable excavators to perform a wide range of tasks efficiently and effectively in various industries, including construction, mining, and landscaping.

China high quality Middle Cylinder Assembly Carry Accumulator Sb81 Cylinder for Hydraulic Breaker Spare Parts   vacuum pump diyChina high quality Middle Cylinder Assembly Carry Accumulator Sb81 Cylinder for Hydraulic Breaker Spare Parts   vacuum pump diy
editor by CX 2023-10-12